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Chapter 1 - Introduction
This report is the result from a project at the IT-university in Gothenburg, 
Sweden. The project is a part of the course Adaptive Algorithms that was 
running in the beginning of Autumn 2002. The part of the course that this 
project is about was Neural Networks, in particular Back Propagation and 
viewing multi dimensional data sets. For the multidimensional viewing of 
data sets, the project described in this report is using the Kohonen's SOFM.

A short introduction to Back Propagation, Kohonen's SOFM and the 
Principal Component Analysis is to be found in the respective section of the 
report.

1.1 Problem description

The problem was divided into two parts. The first was to examine some data 
sets, the second was to train a feed forward network with two of the data sets 
using the back propagation algorithm. The first part was intended to visualize 
the problem, so that the difficulty of one particular data set could be 
evaluated. Then two data sets, one easy and one difficult, were to be chosen. 
Each of those two data sets should then be used to train a feed forward 
network. Both networks should be trained using the back propagation 
algorithm.
[ toc | next | up ]

1.2 Organization

The organization of this report is the following. Chapter one, is this short 
introduction. Chapter two and three presents the data analyze stage, where the 
Kohonen's SOFM and the Principal Component Analysis is described. The 
resulting program, its procedure and the results are described in detail as 
well. Chapter four and five present the Feed Forward network that was 
trained using the back propagation algorithm. Chapter six and seven present 
the conclusion, what modifications this program need to be usable in the 
future and possible applications for the program. The report is ended with a 
small glossary that explains the technical terms.
[ toc | next | up ]



Chapter 2 - Kohonen Data 
Analyzing
This chapter contains some brief information about the Kohonen's SOFM 
(Self Organizing Feature Map) and the choices that was made to get it work 
satisfactory. One obvious alternative of using Kohonen's SOFM for the 
viewing of multiminensional data sets is the Principal Component Analysis, 
which is explained very biefly. There is also a short description of the source 
code to the program that was made to accomodate the demands. 

2.1 Introduction to Kohonen's SOFM

Kohonen’s self organizing feature map is an extended competitive learning 
network. A competitive learning network is a feed forward network that 
consists of one layer of neurons. The neurons has one input for each 
dimension that is going to be analyzed and each neuron has one output that is 
supposed to represents a certain pattern in the input data. To map the patterns 
of the input data to a certain output neuron, the network has to be trained to 
recognize these patterns. That means that when an element of the data is 
analyzed there is one winning output neuron which is closest to recognize the 
pattern. The difference between Kohonen’s SOFM and a competitive 
learning network is that in a Kohonen’s SOFM there is a connection between 
the neurons. Because of this a certain pattern in the input data will seam to 
get a certain part of the output neurons as their winning neurons and there 
will be some clustering of the outputs that represents the classes of input. 
[ toc | previous | next | up ]

2.2 Introduction to the Principal 
Component Analysis

The principal component analysis is a classical statistical method. The goal of 
the method is to decrease the number of dimensions in a multidimensional 
array. Basically only the axis with most variation is kept and the others are 
ignored, this can be calculated with statistical method. By doing this a data 
set with many dimensions can be reduced to two or three dimensions and 
plotted in a graph that can easily show if it is easy or hard to classify the data.
[ toc | previous | next | up ]



2.3 The Kohonen Choices

At the beginning of the course the Kohonen's SOFM seemed to be the better 
choice because it, for the first, did not contain any advanced mathematics. 
Second it was more in line with the course and felt more interesting to 
explore. This made the choice quite easy and it was decided to use the 
Kohonen's SOFM instead of the Principal Component Analysis in the 
beginning of the project.

When using the Kohonen's SOFM there is some parameters that needs to be 
addressed. The most obvious one is probably the size of the output layer. The 
size was chosen to be 13. The choice was made because it seemed to be a 
well balanced value (with respect to computational time and size). The 
computational time was also a big burden because there was a lot of squares 
and root squares (RMS calculating). This was reduced to a simple sum of the 
absolute values instead. More about this is described in chapter 3. The 
Learning Rate and the Sigma value was chosen to decrease over time so that 
an acceptable converging would be achieved.
[ toc | previous | next | up ]

2.4 Program Structure

The Kohonen program is divided in two parts and two files. One that is called 
readfile.c and one that is called kohonen.c. The first file reads the data files, 
which is used both in the Kohonen SOFM and in the back propagation 
program. The second file contains the Kohonen specific functions.
[ toc | previous | next | up ]

Readfile.c

This file takes care of the reading the input data files. Because all data files 
are a little different there is one function for each data file. This function 
reads one row of data at the time and saves it as an list of input and as the last 
element is the output. These functions are called lRead<DataSetName> and 
has to be executed before any data can be received. The last thing that 
happens is that the values get normalized between -1 and 1. During the 
operation two variables are set, lWidth and lSize which are the number of 
elements in one data row and the number of rows in the set. After the file has 
been read the function lGetRow can be called to get one row of data from 0 to 
lSize-1. The elements in the array that is returned is of the type floating-point 



numbers and the output is located last in the array and is an integer value 
between 0 and the number of outputs.
[ toc | previous | next | up ]

Kohonen.c

This file contains all the Kohonen's SOFM functions. First, all the values are 
initialized and all the data from the appropriate file is read. The weights of 
the network are set to random values between 0.2 and 0.8. Then for each row 
of the set a winning neuron is calculated. The winning neuron's weights and 
its neuron neighbours weights are then updated. Which neuron that are close 
enough to be called neighbour is determined by the function lambda. When 
the whole set has been searched, the network goes back to the first row and 
goes on like this until it is decided that it does not need to be trained more. 
The program is generally terminated after about 2000 iterations. Before every 
new iteration starts, the sigma and the learning rate are calculated. These 
values are depending on time and are used in the lambda function and in the 
function that updates the weights. After a predefined number of iterations the 
program runs a function that calculates the winner for all input rows in the set 
and write the distribution for all the different output to files. These files can 
then be used to plot 3D graphs showing the distribution of the outputs. In this 
case the program gnuplot was used. These graphs can be seen in the data 
analyze section.
[ toc | previous | next | up ]

Changeable Parameters

In a Kohonen network there are some parameters that can be changed. The 
first thing is the number of neurons in the network and the neurons initial 
weights. Two other parameters that can be altered are the sigma value and the 
learning rate, they could be constant values or functions that changes during 
time. The sigma value determines how many of the neurons surrounding the 
winning neuron are moved and the learning rate determines how much they 
will move each time. Also the number of inputs to the network can be 
changed, often this is set to the same size as the input data set. There is also 
the possibility to use the more time consuming RMS calculation instead of 
the sum of absolute values.
[ toc | previous | next | up ]



Chapter 3 - Kohonen Data Analyzing 
Results
Even though the Kohonen's SOFM is pretty straight forward, there is still things that can go wrong. This is 
described in the first part of this chapter, the second part are some general graphs and the third part is the 
result of all the data sets. This is quite an amount of graphs, but many very interesting.

3.1 Initial Problems

Well, who said that problems do not exist? Here is the proof that they not even exist, they are also quite 
annoying.
[ toc | previous | next | up ]

How to Present the Result?

There where some difficulties how to represent the output of the network. First every neuron that was a 
winner for a certain output was coloured in a separate colour for this output. This showed a some 
interesting things, but because the outputs overwrite each other this didn't show quite what was expected. 
Instead the distribution of the output was written as a table and plotted as a 3D graph. This made it much 
easier to see the clusters in the output. Some different number of neurons in the output layer was tested, 
from 3x3 to 100x100 and 13x13 seemed to be suitable for this purpose.
[ toc | previous | next | up ]

Huge Data Sets

The Protein data set is huge, and the nettalk is even many times larger. This inflicts problems in memory 
management. First a simple linked list was made and to access each element (each element contains one 
row of the data set) of the list it was required to loop through all data. In the case of 21,000 elements this 
was quite tedious and took about 1/10 of a second for one element, this is because of the way a RISC-
computer architecture is constructed (there is no way 35MB of data will fit into the processor cache). That 
means that to just perform a simple task to all of the elements in the list, it would take several minutes. 
This of course had to be changed, and a quick jumping table was programmed.
[ toc | previous | next | up ]

Computational Time

This is also one very interesting point. In the Kohonen Network there is the need to calculate winning 
output neuron. This is done by summering all the neuron's weights errors and compare them with each 
other. The method that is often used is the Root Mean Square method, which means that each weight error 
is squared and then the resulting value is the square root of the sum of all the squared errors. 

 
The square and the square root functions actually take a considerably large time to execute. In the resulting 
Kohonen program we have therefore only used the sum of all the absolute value errors. 

 
This makes the program execute seven times faster, which is several days of processor computing when 
organizing the protein data set.
[ toc | previous | next | up ]



3.2 Graphs

A collection of some general graphs that are common for all of the later graphs.

Animation of Kohonen's SOFM in Progress

To actually get a picture whether this Kohonen model works or not, this animated gif of one of the wine 
representations was made. It clearly shows that the data is moved in a satisfying manner.

Animated gif over the change of Kohonen output 
layer in time.

[ toc | previous | next | up ]

Learning Rate and Sigma Function

Because of some values changed in time, data from these values where collected. In the graphs below. The 
change of the learning rate and the sigma value from the wine data can be seen and they are the same in all 
sets.

The change of the learning rate in time for the 
wine output.

The change of the sigma value in time for the wine 
output.

[ toc | previous | next | up ]

Change in Weights

Another change in time that is relevant to look at is the change of the weights. This can be seen below, 
again from the wine data set and there is no big difference between some of the sets as well.

http://student.chl.chalmers.se/~it2edse/BPR/ch3/anim.gif
http://student.chl.chalmers.se/~it2edse/BPR/ch3/wine_output_lrate.gif
http://student.chl.chalmers.se/~it2edse/BPR/ch3/wine_output_sigma.gif


The change of the weights in time for the wine 
output.

[ toc | previous | next | up ]

What does the Graphs Show?

The difference of output values showed that it was rather hard to see if there was a good classification if 
there was many variations of the output. The difference can be seen in a comparison between the output of 
the mushroom data and the isolet data. Both are rather easy problems and the output of the mushroom data 
shows this, but the isolet data is much harder to tell if it’s an easy or hard problem.
All the figures in the data set section below shows the distribution of the neurons in the output layer in the 
Kohonen network for each possible output after 2000 iterations.
[ toc | previous | next | up ]

3.3 Analyzed Data Sets

All the data sets are represented in different ways. This led to that each data files had to be treated in 
special way. This is discussed in the readfile.c section. The things that differs are the number of inputs, the 
number of outputs, the type of the elements (characters, integers or decimal numbers) and the number of 
variations of the output. All the data sets are briefly explained later. Because of the difference in the 
amount of data the time it took to run the program varied very much. The echo data only took a minute or 
so and the nettalk data took so long time to run that some data had to be deselected. To do this a random 
function with a possibility of 95 percent to skip one row the data was used. That led to a data set of 5 
percent of the original, which even then took about twelve hours to run. All the sets were trained 2000 
times with the training set and in a certain interval output data were collected. This gets an output like the 
one below that change during time and gets more and more stable.

All data was normalized before presented to the network, this means that all of the different dimensions 
will have the same impact on the system. The normalization range chosen for the Kohonen Network was 0 
to 1.
[ toc | previous | next | up ]

Echocardiogram

This data set was donated by Steve Salzberg (salzberg@cs.jhu.edu) and shows echocardiogram 
information from 132 patients that suffered heart attacks. The problem is to predict if the patient will not 
survive one year after the attack. Part of the difficulty to do this is because of the size of the training set, it 
only contains 4 patients that did not survive the first year and 36 of the patients can not be part of the 
training because they wasn’t followed one whole year. Each element in the set contains 13 numerical 
values, of which four are meaningless and two are used to get the output. That means that there are 7 
inputs and one output which can be 0 or 1. Earlier work has shown that at least about 60 percent 
correctness is possible. The output of the Kohonen network below shows that there are only 4 outputs that 
are 0, but it also shows that they are relatively close which means that it is possible to a rough 
classification of the data, but it would probably be better with a larger training set.

http://student.chl.chalmers.se/~it2edse/BPR/ch3/wine_weightchange.gif


Figure 4 output layer from the Kohonen network 
that shows the distribution of patients that died 
during the first year after the heart attack

Figure 5 output layer from the Kohonen network 
that shows the distribution of the patients that 
survived at least one year after the heart attack

[ toc | previous | next | up ]

Heart-disease

The responsible for these sets are Andras Janosi, M.D at Hungarian Institute of Cardiology. Budapest, 
William Steinbrunn, M.D at University Hospital, Zurich, Switzerland, Matthias Pfisterer, M.D at 
University Hospital, Basel, Switzerland and Robert Detrano, M.D., PhD at V.A. Medical Center, Long 
Beach and Cleveland Clinic Foundation. The sets contain data from 4 databases concerning heart 
diagnostics. The set are divided in 14 variables of which the last is the presence of heart-disease where 0 is 
absence and 1, 2, 3 and 4 are presence. The problem is to find a presence or absence of heart-disease of the 
data. Earlier work has shown that at least about 75 - 80 percent correctness is possible. The output from 
the Kohonen network below shows that there is a higher density in the distribution of the two output 
possibilities, but it is not an absolutely clear distribution which means that there is some source of error 
that can be hard to predict.

Figure 6 output layer from the Kohonen network 
that shows the distribution of absence of heart-
disease

Figure 7 output layer from the Kohonen network 
that shows the distribution of presence of heart-
disease

[ toc | previous | next | up ]

IR-spectra

This set was donated by John Stutz, stutz@pluto.arc.nasa.gov. The problem is to classify infra red spectra 
into 10 main classes. The inputs are 93 flux measurements from two different frequencies observed by the 
infra-red astronomy satellite. As can be seen below some classes are not very well represented in the set. 
Therefore some of the classes may be hard to distinguish 

http://student.chl.chalmers.se/~it2edse/BPR/ch3/echo_output_d1.gif
http://student.chl.chalmers.se/~it2edse/BPR/ch3/echo_output_d2.gif
http://student.chl.chalmers.se/~it2edse/BPR/ch3/heart-disease_output_d1.gif
http://student.chl.chalmers.se/~it2edse/BPR/ch3/heart-disease_output_d2.gif


Figure 8 output layer from the Kohonen network 
that shows the distribution of the first basic class

Figure 9 output layer from the Kohonen network 
that shows the distribution of the second basic 
class

Figure 10 output layer from the Kohonen network 
that shows the distribution of the third basic class

Figure 11 output layer from the Kohonen network 
that shows the distribution of the fourth basic class

Figure 12 output layer from the Kohonen network 
that shows the distribution of the fifth basic class

Figure 13 output layer from the Kohonen network 
that shows the distribution of the sixth basic class

Figure 14 output layer from the Kohonen network 
that shows the distribution of the seventh basic 
class

Figure 15 output layer from the Kohonen network 
that shows the distribution of the eighth basic 
class

Figure 16 output layer from the Kohonen network 
that shows the distribution of the ninth basic class

Figure 17 output layer from the Kohonen network 
that shows the distribution of the tenth basic class

[ toc | previous | next | up ]

Isolet
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This set was donated by Tom Dietterich, tgd@cs.orst.edu. The set contains data from 150 subjects that 
spoke the name of each letter of the English alphabet twice. The problem is to predict which letter name 
was spoken. This is, according to the information on the set, a rather simple task, but because of its many 
different output signals it gets a little bit difficult to separate the outputs from the Kohonen network. Even 
tough it can be seen that the distribution of each output value are rather concentrated, it is not as clear as 
for example the mushroom data.

Figure 18 output layer from the Kohonen network 
that shows the distribution of the letter A

Figure 19 output layer from the Kohonen network 
that shows the distribution of the letter B

Figure 20 output layer from the Kohonen network 
that shows the distribution of the letter C

Figure 21 output layer from the Kohonen network 
that shows the distribution of the letter D

Figure 22 output layer from the Kohonen network 
that shows the distribution of the letter E

Figure 23 output layer from the Kohonen network 
that shows the distribution of the letter F

Figure 24 output layer from the Kohonen network 
that shows the distribution of the letter G

Figure 25 output layer from the Kohonen network 
that shows the distribution of the letter H

Figure 26 output layer from the Kohonen network 
that shows the distribution of the letter I

Figure 27 output layer from the Kohonen network 
that shows the distribution of the letter J
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Figure 28 output layer from the Kohonen network 
that shows the distribution of the letter K

Figure 29 output layer from the Kohonen network 
that shows the distribution of the letter L

Figure 30 output layer from the Kohonen network 
that shows the distribution of the letter M

Figure 31 output layer from the Kohonen network 
that shows the distribution of the letter N

Figure 32 output layer from the Kohonen network 
that shows the distribution of the letter O

Figure 33 output layer from the Kohonen network 
that shows the distribution of the letter P

Figure 34 output layer from the Kohonen network 
that shows the distribution of the letter Q

Figure 35 output layer from the Kohonen network 
that shows the distribution of the letter R

Figure 36 output layer from the Kohonen network 
that shows the distribution of the letter S

Figure 37 output layer from the Kohonen network 
that shows the distribution of the letter T
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Figure 38 output layer from the Kohonen network 
that shows the distribution of the letter U

Figure 39 output layer from the Kohonen network 
that shows the distribution of the letter V

Figure 40 output layer from the Kohonen network 
that shows the distribution of the letter W

Figure 41 output layer from the Kohonen network 
that shows the distribution of the letter X

Figure 42 output layer from the Kohonen network 
that shows the distribution of the letter Y

Figure 43 output layer from the Kohonen network 
that shows the distribution of the letter Z

[ toc | previous | next | up ]

Mushrooms

This set was donated by Jeff Schlimmer, jeffrey.schlimmer@a.gp.cs.cmu.edu, and contains data from 
8124 mushrooms and consist of 22 nominally values and a class attribute (edible or poisonous). The 
problem is to predict if a mushroom is edible or poisonous. Earlier work has shown that it is possible to 95 
percent classification accuracy and the output from the Kohonen network below shows that the two 
different classes are clearly distinguishable.

Figure 44 output layer from the Kohonen network 
that shows the distribution of the edible 
mushrooms

Figure 45 output layer from the Kohonen network 
that shows the distribution of the poisonous 
mushrooms

[ toc | previous | next | up ]

Nettalk

This set is allowed to use for non-commercial research purposes by Johns Hopkins University and contains 
the 1000 most common English words and how they are pronounced. The problem is to predict how each 
letter is pronounced. In earlier attempts to solve this problem a window of seven letters have been used 
where each letter is an array of 26 Booleans, one for each letter in the English alphabet, all together 182 
inputs was used. There are two different outputs, one for which letter and one for how the letter should be 

http://student.chl.chalmers.se/~it2edse/BPR/ch3/isolet_output_d23.gif
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pronounced, that is 260 different variants of output. Because of this the Kohonen output would be very 
hard to analyze, so a different approach was used to do it. Only the difference in the pronouncing was 
written as output from the network as the graphs below shows. 

Figure 46 output layer from the Kohonen network 
that shows the distribution of > of the second 
output

Figure 47 output layer from the Kohonen network 
that shows the distribution of < of the second 
output

Figure 48 output layer from the Kohonen network 
that shows the distribution of 0 of the second 
output

Figure 49 output layer from the Kohonen network 
that shows the distribution of 2 of the second 
output

 

Figure 50 output layer from the Kohonen network 
that shows the distribution of 1 of the second 
output

 

[ toc | previous | next | up ]

Proteins

This set is allowed to use for non-commercial research purposes by Johns Hopkins University and contains 
data from a number of proteins, which consists of 20 amino acids with a following secondary structure. 
The secondary structure can be of three types, alpha-helix, beta-sheet and random-coil. It is not clear from 
the task which symbol that represents what secondary structure, so the symbol rather than the name is used 
later in the report. The problem is to predict the secondary structure given the amino acid sequence.

There was only minor corruption in the two files and the corruption is more like inconsistencies in the file 
format. Some of the 'end' tags were missing and the format of the 'end' tags were different in the two files. 
This was corrected in the data files before they were used as input to the program.

The training data consists of 18,105 amino acids with corresponding structure and the test data (used as 
validation and not used for training) consists of 3,520 amino acids with corresponding structure. Each data 
set row has a fixed number of previous and subsequent amino acids exactly like the nettalk approach. A 
window size (number of elements per row) of 7 and 21 was tried and also different representations for the 
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data was used. The first representation tried was to use one float for each row element or 7 and 21 inputs 
respectively. The other approach is to present the data with 20 Boolean values for each row element, this 
would result in 7*20 and 21*20 inputs respectively. The 420 input version was used to produce the 
following graphs.

Figure 51 output layer from the Kohonen network 
that shows the distribution of the secondary 
structure _

Figure 52 output layer from the Kohonen network 
that shows the distribution of the secondary 
structure e

 

Figure 53 output layer from the Kohonen network 
that shows the distribution of the secondary 
structure h

 

This results really suggest that the secondary structure 'h' is very easy to distinguish from the rest of the 
data.

[ toc | previous | next | up ]

Sonar

The set contains data from sonar signals. The problem is to predict if the signal comes from a rock or a 
mine. The set contains of 208 rows of data and earlier work has shown that it is possible to classify the 
data very well, almost up to 90 percent. The output from the Kohonen network below shows that there are 
some distinctive differences in the outputs, but that there is also some overlapping in the distributions.

Figure 54 output layer from the Kohonen network 
that shows the distribution of rock output

Figure 55 output layer from the Kohonen network 
that shows the distribution of mine output
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Wine
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This set comes from Stefan Aeberhard, stefan@coral.cs.jcu.edu.au, and contains data from a chemical 
analysis of 178 different wines from three different cultivars. The inputs are 13 numerical values and the 
problem is to predict which cultivar the wine belongs to. The output from the Kohonen network below 
shows that this is a very easy set to classify and earlier work has shown that it is possible to predict the 
cultivar to almost 100 percent.

The dimensional normalized distribution of the 
wine data set.

As can be seen from this graph, all the data dimensions are well distributed over the input space. This can 
be important to se so there is not one small value that is skewing all the data to one corner.

Figure 56 output layer from the Kohonen network 
that shows the distribution of the first class of 
wines

Figure 57 output layer from the Kohonen network 
that shows the distribution of the second class of 
wine

 

Figure 58 output layer from the Kohonen network 
that shows the distribution of the third class of 
wine
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Vowels

The set was collected by David Deterding at the University of Cambridge, who recorded examples of the 
eleven steady state vowels of English spoken by fifteen speakers for a speaker normalization automatic 
speech recognition. The problem is to predict the eleven steady state vowels. The output from the 
Kohonen network below shows that there are some clear classifications, but they are all overlapping a little 
bit, this could make it hard to separate the different vowels.
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The dimensional normalized distribution of the 
wine data set.

As can be seen from this graph, all the data dimensions are well distributed over the input space. The 
distribution is almost following the normal distribution this is a quite good sign, and suggests that the data 
is well represented..

Figure 59 output layer from the Kohonen network 
that shows the distribution of the first of the 
vowels

Figure 60 output layer from the Kohonen network 
that shows the distribution of the second of the 
vowels

Figure 61 output layer from the Kohonen network 
that shows the distribution of the third of the 
vowels

Figure 62 output layer from the Kohonen network 
that shows the distribution of the fourth of the 
vowels

Figure 63 output layer from the Kohonen network 
that shows the distribution of the fifth of the 
vowels

Figure 64 output layer from the Kohonen network 
that shows the distribution of the sixth of the 
vowels
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Figure 65 output layer from the Kohonen network 
that shows the distribution of the seventh of the 
vowels

Figure 66 output layer from the Kohonen network 
that shows the distribution of the eighth of the 
vowels

Figure 67 output layer from the Kohonen network 
that shows the distribution of the ninth of the 
vowels

Figure 68 output layer from the Kohonen network 
that shows the distribution of the tenth of the 
vowels

 

Figure 69 output layer from the Kohonen network 
that shows the distribution of the eleventh of the 
vowels
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Chapter 4 - Back Propagation Network
This chapter describes the Back Propagation part of this report. The result of the program described in this 
chapter can be found in the next chapter. Here a quick description of the Back Propagation Algorithm can be 
found as well as the choices regarding our network. The program is described as well as the capabilities of it. 
And this chapter ends with a short description of the data sets that has been chosen.

4.1 Introduction to the Back Propagation Algorithm

The term 'Back Propagate' means just what it says. To propagate some signal backwards through the network, 
in this case it is the error and the reason we do that is to train the network. Basically this chapter explains 
shortly what a neural network is and how it is trained. 
[ toc | previous | next | up ]

The Neuron

This is the fundamental building block of any neural networks. This neuron is programmed to imitate the 
behaviour of the neurons in our brain. It can be thought of as a black box with many inputs and one output, the 
axon. On each input there is a weight which regulates how much that input is going to affect the output. Inside 
the black box, all the inputs are added together and when the sum exceeds a threshold value, the axon fires. 
This makes a pattern recognition unit that can be made to fire on a specific pattern, and it can be taught to 
learn specific patterns by changing the weights. 
[ toc | previous | next | up ]

Feed Forward Networks

A Feed Forward Network is made from Neurons and they are arranged in layers. Usually models of three 
layers are used, one input layer (that does not contain any neurons, but all the input signals), a hidden layer 
and an output layer which both are made from Neurons. It is the last two layers that actually does anything. 
All of the neurons inputs are connected to the previous layers outputs. This structure is called a Feed Forward 
Network.

Forward Propagation is when you input the signal vector to the network through the input layer and then 
check what outputs are generated on the output layer. When the network is not trained, it can present almost 
anything on the outputs. It is the possibility to train this network that makes it worth while.
[ toc | previous | next | up ]

Back Propagation Network

This is a process to train a Feed Forward Network, it is called Back Propagation because that is in essence 
what is done. The error from the outputs are propagated backwards through the network so that the weights 
can be updated to recognise the chosen pattern. This of course requires that there is a wanted output from the 
input vector. This is also called Supervised learning. 
[ toc | previous | next | up ]

4.2 Back Propagation Choices

The network that is used consists of only one hidden layer and the weights are initialized to a random number 
between minus and plus one, divided with the square root of the number of neurons in the same layer. As 
shown in the following formula.



 
The momentum and learning rate was chosen to be a fixed value rather than an adaptive one. They were both 
tested in different intervals and the result of that testing is described in the next chapter. In the initializing 
phase the layer sizes are set depending on the input data set. Only the hidden layer size can be altered for a 
specific data set. As the activation function the hyperbolic tangent function was used, because it makes it easy 
to compute the local gradient (delta value). The parameters A and B were both set to one in the beginning but 
was also tested in different intervals to see the effect they have on the performance. This formula shows how 
the parameters A and B were used in the network.

 
Also the choice to train the network after showing one input vector was chosen. The alternative is to 
accumulate the total error over all of the input vectors and then train the network. The training after each input 
vector should lead to quicker converging and it does seem to work.
[ toc | previous | next | up ]

4.3 Program Structure

The program consists of two source files and one header file. It is completely written in ANSI C and it is 
compileable under Linux. An accompanying Makefile has also been made to make the compiling process 
more simpler. It is important to notice that if the same readfile.c is used for both projects, a make clean must 
be issued before compiling the other program. This is done because the compile time option to normalize 
values must be set correctly. If this is not done, all data will be normalized in the other range, 0 to 1 instead of -
1 to 1.
[ toc | previous | next | up ]

Readfile.c

This is the same file that was used for the Kohonen task. The only change is that the normalize function now 
normalizes the values between -1 and 1. This is because that is the range that is used in backprop.c.
[ toc | previous | next | up ]

Backprop.c

The program file can be divided into three main tasks, the first is initialization, the second is the progress 
indicator and the last is the actual network training. The main program loop starts with the progress indicator. 
The second part of the main loop does the actual training and it can be divided into three main tasks, read a 
row of data, present it to the network, and then train it using back propagation. 

 
The first thing done in the initialization is to read the input data, this is done by calling a function in readfile.c. 
Then all data structures are allocated, the weights are initialized randomly between values that are relative to 
the size of the layer and all other data structures is cleared. 



The progress indicator loops through the whole training set and computes an RMS error, and a correct 
percentage. The progress indicator loops through all rows of data and it is run twice for each program loop, 
once for the training set and once for the test set. In the end it presents a sequence of four values. The first 
value is the total RMS error, the second value is number of correct predictions, the third column is the total 
number of rows in the current set and the last column is the percentage of correct predictions. No training is 
done here, so the test set will not be contaminated.

The actual training is done in the second part of the main loop. Here three tasks are done. The first is to read 
new row of data, this is done by calling one of the readfile.c functions. The data is then presented to the 
network as two vectors, one for the input and one for the desired output. The second task is to forward 
propagate the input vector through the network to get the actual output. The actual output is then used in the 
third task, where it is subtracted from the desired output and the resulting value is back propagated through the 
network as Delta Values. When all the delta values are calculated the actual update of the weights are done.
[ toc | previous | next | up ]

Changeable Parameters

The program accepts command line parameters, and with them it is possible to specify most of the neural 
network and back propagation parameters. More parameters will be added as the program grows in 
complexity, but it is always possible to see a list of supported parameters by typing './backprop --help'.

The current program has the following parameters. File or data set, specify which data set that is used for 
training. HiddenSize, to specify the size of the hidden layer, if this is omitted or zero, the default size is chosen 
depending on the following formula. 

 
LearnRate, specify the fixed learning rate. Moment, specify the fixed momentum term, set this to zero or omit 
to deactivate. Parameter A and B, specify the A and B parameters that are discussed in Back Propagation 
Choices above, if omitted the default value of 1 is set. Number of iterations, specify how many iterations that 
should be calculated, set this to zero or omit to run for infinity. There is also the possibility to add a prefix to 
the created filename, this is specified as filePrefix. The size of the input and output layers are updated 
automatically to adapt to the input data.
[ toc | previous | next | up ]

4.4 Chosen Data Sets

This is the different data sets that was chosen. For the easy choice we have chosen the Wine data set. For the 
hard choice we chose Proteins and the Vowel data set was used to test all parameters on. Because it is fairly 
simple and does have a lot of data to train on.
[ toc | previous | next | up ]

Wine

There not much to say about this set. The Kohonen revealed that it should be fairly simple so a small hidden 
layer was chosen. It was run several times with small variations in the parameters, and the final parameters 
were set to the following. The test set consists of 20% from the original data set, extracted in a random way. 
This means that the test set will vary from each time, making the scores from each run incomparable.

Input layer size: 13
Output layer size: 3
Training data set size: 142
Test data set size: 36
[ toc | previous | next | up ]

Proteins



This data set is quite big and consists of a specific test part. This makes it good to use as a reference how good 
the back propagation program really is. At first each row of the data was represented as seven numbers, but 
later it was decided to use 21 numbers where each number consists of 20 Boolean values as described in 
Chapter 3, Proteins. It is the 420 input model that is presented here.

Input layer size: 420
Output layer size: 3
Training data set size: 18,105
Test data set size: 3,520
[ toc | previous | next | up ]

Vowels

This data set was used to test various parameters on. At first this was the hard choice, but when more complex 
data sets were found, it was used for testing purposes. It has helped to understand the parameters a lot.

Input layer size: 10
Output layer size: 11
Training data set size: 528
Test data set size: 462
[ toc | previous | next | up ]



Chapter 5 - Back Propagation Network 
Results
Since the Wine data set seemed to be very easy to categorize, it was the first data set presented to this back 
propagation program. The second set to be presented is the proteins data set. It is very complex and a 
nettalk like approach was needed. The third data set described is the Vowels data set. Because the Vowel 
data set seemed to be a slightly more complex data set than wine and was larger (more data to train on), it 
was trained many times with different parameter settings, so that each of the parameters influence could be 
monitored. All three data sets and the more complex Vowels data set are presented here with graphs and 
results. But first, some of the problems encountered will be described.

5.1 Initial Problems

Through this project some problems were encountered, a selected few are presented here. The reason for 
this is that it gives some insight of what was achieved, and maybe to prevent them from arising next time.
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Extra '-1' Neuron

The problem of implementing this feature, it not big, its just irritating. It involves a lot of small changes 
everywhere in the code and it is very important to place the +1 count in the right places, otherwise a 
segment fault or overwriting memory could be the result. A good way to handle this is probably to 
program the code with this in the mind and use separate constants for the size of the layers and weight 
arrays as shown in the picture below.

This would mean that for the example above that has 2 inputs and 2 outputs, the InputLayerSize is 2, the 
HiddenLayerSize is 3 and the OutputLayerSize is 2. The HiddenWeightArraySize (this is the weight array 
size for each neuron in the hidden layer) should be set to one more than the size of the input layer, namely 
3. The OutputWeightArraySize should be set to the HiddenLayerSize plus one. Then all these constants 
should be used instead of the +1 counts that is used in the current program. This would increase the 
structure, understanding and scalability of the code.
[ toc | previous | next | up ]

How to Present the Result?

This is very similar to the problem in the Kohonen chapters. How should the data be presented to the user? 
Since the gnuplot program was quite familiar at this point, the actual presenting of the data was not the 
issue. The real issue was probably the way the data was generated. In the beginning a redirect to a file was 
used quite commonly. Each programmer had their own format of the files and even if the files still exist 
there is very little comment on each file and the reason why it was computed was probably not 
remembered more than a couple of hours after it was generated. This has made a lot of information 
useless. Instead maybe it is a good idea to beforehand decide what structure and what data is to be stored 



and then store it in different directories. With each directory there should be an information file, that 
describes when it was made and the changes since last time or the purpose of this generation. This, 
together with a small program that could automatically generate graphs from this directory would have 
made our time more well spent. 
[ toc | previous | next | up ]

What is Considered to be a Correct Prediction?

Another completely different question is, between what values is considered right output? How much may 
the outputs deviate from the desired output and still be called right? In the resulting program, if the highest 
output is above zero and is the same as the desired then it is considered to be correct.
[ toc | previous | next | up ]

No Coding Structure

This was the main of our problems, and also the main cause for the late presentation of this report. The 
program was written by three different people, in three different ways. There was no initial discussion how 
the program was to be structured. The main reason for this was that parts of the group already was busy 
with another project. This mistake is probably very common in new projects, but should be avoided at all 
costs. The lack of collaboration in the beginning usually changes the outcome of the project in a not 
desired way.

In physical terms this problem revealed itself in countless number of hours debugging, because no one had 
the full knowledge of the code. Later though, when everyone had turned the code upside down for the 
tenth time. The general knowledge of the code was probably far greater and also quite good in the learning 
perspective, though it could also probably been accomplished by a thoroughly overhaul in the beginning of 
the project.
[ toc | previous | next | up ]

5.2 Wine, Graphs and Results

After implementing the back propagation algorithm to a neural network processing the wine data we could 
see some interesting behaviours. The most interesting thing to look at when evaluating a neural network is 
the possibility to classify the input correct, both for the training set and the test set. In the beginning of the 
training phase is the correctness fluctuating pretty much, but after (in this case) approximate 120 iterations 
it stabilizes. 

The percent of correctness over time for the wine 
data set.

Another interesting thing to look at in a neural network is the RMS (root mean square) error for the nodes. 
The RMS error is a measurement for how correct the nodes are calculated compared to the correct output. 
The graph below shows that it takes a while before the error stops fluctuate and stabilizes. After it stops 
fluctuating it decreases very slowly.

http://student.chl.chalmers.se/~it2edse/BPR/ch5/wine.gif


The change of the RMS error over time.

It seems to have converged at 250 iterations or so, but is displaying very good results even at 100 
iterations. This could probably be better if the learning rate and momentum were chosen differently.

Percentages

The average of the networks with 5 hidden units and up is for the test set, around 100%. This is with a 
random selection of the test set. The best percentage reached with the training set is 100.0% and it was 
performed by almost all networks from iteration 10 and up. 
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5.3 Proteins, Graphs and Results

The secondary structures '_', 'e' and 'h' are in the graphs below labelled as their respective outputs, 0, 1 and 
2.

Varying the Number of Hidden Neurons

When a data set is first presented it is really hard to know how complex it is in number of neurons in the 
hidden layer. Especially if no previous experience is present. So this is the task of the following graphs, to 
show how many neurons that actually were needed for this data set.

Percent correct predictions of the protein set with 
10 hidden units.

Percent correct predictions of the protein set with 
20 hidden units.

Percent correct predictions of the protein set with 
30 hidden units.

Percent correct predictions of the protein set with 
50 hidden units.

As can be seen the ten neuron graph is somewhat flat, it has converged this early. It was expected to be too 
small but the effect was not known. The 20 hidden neuron graph is a lot better than the first, but there is 
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still some 'slowness' about it if compared to the last two. The 30 and 50 neuron graphs seem to perform 
quite well. The 50 neuron graph seems to perform faster, but the computational time made most of the 
following graphs based on a hidden layer of 30 neurons. 

One really interesting thing about this is, that below 100 iterations the first network (the one with 10 
hidden units) actually performs better than the other. Although in the long run it will probably not have a 
chance since the other outputs are still improving at the end of 100 iterations. One could also speculate 
about the generalization prediction of the first network. Would it really perform worse than the others if 
more data was fed into it? Hard to answer but the graphs above does suggest the possibility. The number 
of neurons has in spite of this been chosen to 30 for most of the other graphs.

Difference Between Runs

In order to actually see the effect of the randomness in the network, four batches on the same data set with 
the same parameters were run. This is the result.

Percent correct predictions of the protein training 
set with 30 hidden units, generated four times.

Percent correct predictions of the protein test set 
with 30 hidden units, generated four times.

As can be seen, they are not that different. This was a good and interesting thing to see though. Batch 
number one (the red) seems to deviate the most, but still shows the same charachteristics as the other. This 
means that the other graphs that show differences between different parameters could be taken quite 
literary since there was no real differences.

RMS Error of the protein training set with 30 
hidden units, generated four times.

RMS Error of the protein test set with 30 hidden 
units, generated four times.

This is the RMS Error for the four runs, and they clearly show traits of similarity with the percentage 
graphs above. Yet again the red is the one most distingishable one and it performs slightly worse than the 
other here as well. 

Neuron Output Specific Graphs

The Kohonen results presented in chapter 3 hinted that the secondary structure 'h' should be easy to 
recognize. The results below that show the percent of correct predictions in each of the secondary 
structures, has the ability to verify that.
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Percentage of correct predictions for each 
separate output of the protein set with 75 hidden 
units

This graph is with definite certainty the graph that shows the most in this report. Here we can se that the 
secondary structure 'h' (number 3 in the graph) is very easy to distinguish from the others and almost 
directly turn towards the 100% mark. The second proof that this set is easy it the test set curve. It starts 
dropping very early indicating that it is over trained. Maybe it is possible to make a run where the third 
output is not trained at every iteration, to make the match more evenly. Though that is beyond the resulting 
program at this point.

Also the first and second output (secondary structure '_' and 'e') seems to follow each other, this could 
suggests that the errors in one of them is predicted as the other. Then when the time progresses it learns 
how to distinguish them more accurately. As for the test sets for both of the outputs they seem not to 
display any hints of overtraining. The small dip in the beginning is probably just the result of the 
distribution changes that is going on. The rapid changes in one output might 'steal' predictions from the 
other outputs and result as dips in them.

Many Iterations

The Percentage correct and the RMS Error from the graph presented above is quite interesting to note.

Percent correct from a long iteration run of the 
protein set with 75 neurons in the hidden layer

RMS Error from a long iteration run of the 
protein set with 75 neurons in the hidden layer

The training error is is getting smaller all the time but the test error seem to stagnate after 800 to 1000 
iterations. The test set percent correct is actually rising all the time and the question is when to stop 
training this network. Since the third output is quite over trained at 400 iterations when the other seem to 
present good results, it is tough to decide, but the prudent course of action is probably to stop around 350 
iterations.

Percentages

The average of the networks with 30 hidden units and up is for the test set, around 47%. The best 
percentage reached with the training set is 93.7% and it was performed by the 75 hidden neuron network at 
iteration 1200. 
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5.4 Vowels, Graphs and Results

The behaviours of the back propagation networks were interesting to study, because it showed expected 
and unexpected things, the variation of neurons needed in a well working network, the coupling between 
learning rate or momentum and the number of neurons in the hidden layer. When implementing the back 
propagation algorithm to analyze the vowel data set we wanted to see how changes in the network 
structure affected the behaviour of the network and the output result. To see the differences dependent on 
the variables (momentum, learning rate, number of neurons and parameters A and B) we plotted them out. 
Only one variable was changed at a time. 
[ toc | previous | next | up ]

Number of Neurons

This test was done from as few as 5 neurons up to 75 neurons in different intervals (5, 8, 10, 15, 20, 30, 
50, and 75). Out of this graph we could see that the 20 neuron network gave us the best results.  

The percent of correctness over time for different 
number of neurons in the hidden layer.

As can be seen by this, over the 15 neuron limit there was no noticeable increase or decrease in 
performance. It also shows that the fewer neurons that was tried the bigger was the fluctuation. It would 
suggest that a choice of 15 neurons is quite adequate for this data set. The change in other parameters 
could also influence some, so it is to early to say.  
[ toc | previous | next | up ]

Learning Rate

For learning rate we tried a wide range of values, from 0.001 to 0.5. One thing that was speculated about 
was the influence of the learning rate with different sized data sets since the choice to train after each 
element of the data set was made.

The percent of correctness over time for different 
values for the learning rates.

The percent of correctness over time for different 
values for the learning rates.

It was seen by these graphs that the fluctuation was connected to the size of the learning rate, the larger 
learning rate, the larger fluctuation. The fluctuation is also larger for the test set than for the the training 
set. The really big learning rates are not useful at all because of the low correctness and the huge 
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fluctuation. On the other hand, if the learning rate is very small (under 0.005) it takes to long time to train 
the network.

There was no real way to prove the learning rate behaviour on different sized data sets with just this 
information, but it is discussed in chapter 6.
[ toc | previous | next | up ]

Momentum

Momentum is an important thing in the neural network because it minimizes the chances to get stuck in a 
local minimum. Therefore the interest in how the momentum affects the behaviour of the output was big. 
We tried to find what would happen if it was way to large. 

The percent of correctness over time for different 
values of the momentum.

The percent of correctness over time for different 
values of the momentum.

When it was set to 0.9, really strange behaviour was observed. It was also observed that the fluctuation 
was related to the size of the momentum. The bigger momentum, the bigger fluctuation, except then the 
momentum was way to large. The best result was when the momentum was between 0.5 and 0.05.
[ toc | previous | next | up ]

Parameters A and B

Some of the less interesting changeable variables are the A and B parameters in the activation function. 
These are the parameters that are presented in chapter 4.

The percent of correctness over time for different 
values of the A and B constant.

When changing these some of the output was not even possible to use in any application. Either because 
the correctness of the output was very low or because it fluctuated too much. What is done is change the 
effect that the previous output has on the neuron and also the current output. For extreme values this would 
result in a very sensitive or a completely unsensitive network.
[ toc | previous | next | up ]

Optimized Network
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From the previous results a mix of the best values was used to generate the following graphs. This is a way 
to get the best result possible without having adaptive momentum and/or learning rate. In the same time it 
gave us a possibility to see the behaviour dependent on the change in the different variables.

The percent of correctness over time for the 
optimized network using different values of the 
learning rate and momentum.

From this graph the following could be seen. The difference seems to change quite a lot when the different 
values are tried, but the performance is quite satisfactory.
[ toc | previous | next | up ]

RMS Error

One other interesting thing, except the correctness of the output, is the RMS (root mean square) error. This 
shows how big the error between the output and the desired output is. This error is calculated here only on 
the training portion of the data set. In other words, the RMS error is almost always decreasing, even after 
the network is over trained. 

The change in RMS over time for different values 
of the learning rate.

The change in RMS over time for the original 
network.

The change in RMS over time for the optimized 
network.

Most of the graphs have a point where there is a much larger amount of fluctuations than in the rest of the 
graph. This point appears usually just before the slope starts to flatten out.

Percentages

The average of the networks with 15 hidden units and up is for the test set, around 48%. This is with the 
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designated test set. The graphs above are made with a random selection of the test set. The best percentage 
reached with the training set is 97.0% and it was performed by the 20 hidden neuron network at iteration 
300. 
[ toc | previous | next | up ]



Chapter 6 - Conclusion
Many of the conclusions are embedded in chapter 3 and 5 which present the results of the Kohonen and 
the Back Propagation networks. Some chosen data is also presented here.

6.1 Kohonen's SOFM

The kohonen's SOFM is a quite simple and understandable method of a self organizing network. But it can 
really be complicated to implement and it really requires a lot of computational power to be able to 
compute anything.

Checking the Data Sets

This was actually a quite nice thing to do, it gave an extra advantage to tackle the problem. Especially the 
distribution of the input dimensions were good to have seen, so that errors could have been spotted right 
away. Also the search for question marks and missing commas in the data set made the data seem more 
familiar and made the handling of it somewhat easier.

Size of the Network

The size of the network is quite important. The size we chose was 13, and it was chosen because it seemed 
to be a nice compromise between the program execution time and the resolution of the graphs. Since the 
time to calculate a larger network increases in exponential manner, this was thought to be a good decision. 

Calculations

There is a lot of calculations that need to be done in the Kohonen's SOFM. It is the calculation of who is 
the winning neuron that takes the most time. And as described in chapter 3, the use of the absolute value 
instead of the RMS calculation speeded up the program by more than seven times.

6.2 Back Propagation

There is a lot that can be done with a Back Propagation Network. But there are also a few things to keep in 
mind when programming them.

Number of Neurons

When choosing the number of neurons in the hidden layer it is better to have too many, if you have the 
computer power to run it, than to have to few. The number of neurons in the hidden layer is connected to 
the number in the output and input layer. It is also connected to the complexity of the input data. A good 
example of this is to compare the network for the wine (not so complex) with the network for the vowels 
(more complex).

Learning Rate Impact on Huge Data Sets 

When comparing the two networks (wine and vowels) we realized that a good value of the learning rate is 
connected to the size of the network and the complexity of it. We can not say how big/little it should be 
under witch circumstances you have to test your way through it (or trust well trained feeling).

Since the network is trained on each data element rather than on the complete data set, it is important to 



keep the learning rate small. Otherwise the data could fluctuate a lot and the results are jumping up and 
down because different elements tell it to go to a different direction. Based on the experience from this 
project a good rule of thumb for choosing the initial learning rate is 10/number of data elements in the data 
set. This will provide a quite accurate number that can be used for training.

Momentum

Because the momentum is used to overcome local minimums in the training of the network, it takes a very 
important part in the training. To have a big momentum makes it easier to overcome minimums and 
sometimes possible to overcome big local minimums. But, it makes the output fluctuate a lot and makes it 
harder to get a good result of the correctness. In the other hand using a small momentum makes it harder, 
if possible, to overcome local minimums. So what would be preferred is a momentum that is adaptive and 
in that way takes the best part from both worlds.

An adaptive momentum gains size when travelling downwards and is losing size when travelling upwards. 
This makes it more likely to overcome minimums.

Optimization

Optimization is something that almost every network has to go through to give good final result. One way 
of minimizing the effort is to let the learning rate, momentum and even the number of neurons be adaptive. 
This makes the network slower so it is an adjustment of time to do manual preparations and time to let the 
network train. The choice is connected to the size and complexity of the input data, the size of the network 
e.g. so the choice is very hard to predict but a way in the middle is to prefer.

Over Training

Over training a network is something that is not wanted, because it deteriorates the final results of a neural 
network. We tried to over train a network, just to see how it reacted. It was actually pretty hard to get some 
dramatically changes. We succeeded to get some of the networks over trained after many attempts. This 
shows that it is not always easy to over train a network, but it is very important that this does not happen.

A graph showing a network (the green) with a dip 
that can indicate an over trained network.

A graph showing some networks with early dips.

One really good example of overtraining is described in chapter 5, where the third output shows significant 
proof of being over trained.

Calculation Time

There must be about 2 or 3 whole days of computer processing time in these graphs presented in the report 
and at least an additional week processing time for testing. If this was 18 months ago it would be the 
double. It would be nice to know what results the next year students will produce, if they have access to 
better computers, or if it will be the same results.

One thing can really be said. The Kohonen's SOFM really take time to execute. The protein data set took 
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13 hours to compute and several other sets had to be cut down in order to being able to compute some 
output at all. To get this all running as fast as possible, there was a lot of optimizations done. Formulas 
were looked over to see if something could be calculated together and to use variables instead of functions 
in the really time critical part of the program.



Chapter 7 - Further work
It would be interesting to compare our result from the back propagation 
network with a identical network except to let the all weight changes after 
one iteration instead of, as today, change them one by one. Some other things 
to change are the momentum and learning rate, let them be adaptive. And 
then save all the data and plot it out to some graphs. In this way it would be 
possible to see how a network is evolving and changes over time. These 
changes/comparisons would give us a deeper look into the world of neural 
networks. 

One important improvement of our program is the possibility to save the 
states of each neuron, i.e. all the data of the network. This would make it 
possible to train the network and later use the trained network in real 
application. If the program for training and testing the network is very 
dynamic, maybe because of that not so quick, it gives a good start to use it 
when developing real applications. To get all the states for each neuron and 
then easily implement it in a much faster version, for example in assembler or 
on a silicon chip.

It exists many applications where it would be very interesting to implement a 
neural network to improve the application. This makes it even possible to 
make new applications that were not possible before. One example is a 
system locating human bodies, it could be used in rescue missions, intruder 
alarms and even in some kind of interactive art systems. Another example is 
a system for searching and analysing data, for example it could give better 
search result on the web or finding life in space. Why not, build a system 
with a web camera and a projector, let the camera survey a room and show 
the people, just the people, moving around in the room with the projector. 
This could be an amusing and fascinating contribution to a dreary 
environment. A further project with a neural network in the central system 
could be a camera based human body interface to a computer. This would 
give some very interesting ways of controlling things, for example a robot or 
computer game. The number and types of applications possible to use an 
interface like that is enormous.



Chapter 8 - Glossary
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The purpose of life.
Back propagate

A way of processing data in a network, going from the output to the 
input.

Delta Value
A local gradient between the actual output and the desired output in a 
neuron. See Chapter 4.2 and 4.3 for a more detailed description.

Forward propagate
A way of processing data in a network, going from the input to the 
output.

Gnuplot
A simple console based program for plotting graphs under both Linux 
and Windows.

Hidden layer
The layer not visible from outside the network.

Input layer
The input layer of neural network, it does not contain any active 
neurons.

Kohonen's SOFM
A specific type of SOFM. See Chapter 2.1 for a more detailed 
description.

Lambda
A neighbourhood function, that computes a value proportional to the 
distance. The value is large at small distances and small at far 
distances.

Layer
A part of a network of neurons.

Learning rate
A parameter to decide how quick the network should be able to learn.

Momentum
A parameter used to overcome local minima.

Network
In this report a system of neurons.

Neuron
The building blocks containing all intelligent in the brain. See 
Chapter 4.1 for a more detailed description.

Output layer
The layer of neurons that gives the output data.



Overtraining
A behaviour that accurse if the network is trained to much. See 
Chapter 6.2 for a more detailed description.

Processor cache
An internal very fast and expensive memory in a processor.

RMS error
A way of calculating a type of mean error. 

RISC-computer architecture
A type of processor architecture, the one used in PC’s.

Sigma
A function used in the lambda neighbourhood function and it is an 
approximation of the normal distribution.

SOFM
Self organization feature maps. See Chapter 2.1 for a more detailed 
description.

Supervised Learning
A type of training when an input and the correct output are given to a 
network.

[ toc | up ] 
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